Посты для тега : ‘наблюдений’

Неотрицательная матричная факторизация

В предыдущих статьях рассматривался алгоритм неотрицательной матричной факторизации (NMF), который разбивает набор числовых наблюдений на компоненты. Этот метод был применен к задаче тематической классификации новостей и к задаче обнаружения событий, повлиявших на объемы торгов отдельными акциями или группами акций. Алгоритм не нуждается в учителе, поскольку применяется для того, чтобы охарактеризовать данные, а не для прогнозирования […]

Читать далее »

Введение в теорию деревьев решений

Деревья решений – один из простейших методов машинного обучения. Это совершенно прозрачный способ классификации наблюдений, и после обучения они представляются в виде последовательности предложений if-then (если-то), организованных в виде дерева. На рис. 7.1 приведен пример дерева решений для классификации фруктов.

Читать далее »
 
Rambler's Top100