Посты для тега : ‘классификации’

Введение в теорию деревьев решений

Деревья решений – один из простейших методов машинного обучения. Это совершенно прозрачный способ классификации наблюдений, и после обучения они представляются в виде последовательности предложений if-then (если-то), организованных в виде дерева. На рис. 7.1 приведен пример дерева решений для классификации фруктов.

Читать далее »

Метод опорных векторов

Ранее  были рассмотрены машины опорных векторов (SVM). Пожалуй, это самый сложный метод классификации из всех описанных в книге. SVM принимает набор данных, состоящий из чисел, и пытается спрогнозировать, в какую категорию он попадает. Можно, например, определить роль игрока в баскетбольной команде по его росту и скорости бега. Для простоты рассмотрим всего две возможности: позиция в […]

Читать далее »

Документы и слова

Классификатору, который мы построим, будут необходимы признаки для классификации различных образцов. Признаком можно считать любое свойство, относительно которого можно сказать, присутствует оно в образце или нет. Если классифицируются документы, то образцом считается документ, а признаками – встречающиеся в нем слова. Когда слова рассматриваются как признаки, мы предполагаем, что некоторые слова вероятнее встретить в спаме, чем […]

Читать далее »

Байесовский классификатор

Байесовские классификаторы рассматривались ранее. Мы показали, как построить систему классификации документов, например, для фильтрации спама или разбиения множества документов по категориям при наличии неоднозначных результатов поиска по ключевым словам.

Читать далее »

Наивная классификация

Имея вероятности для слов, входящих в документ, вы должны выбрать какой-то способ комбинирования вероятностей отдельных слов для вычисления вероятности того, что документ в целом принадлежит данной категории. В этой статье мы рассмотрим два разных метода классификации. Оба работают в большинстве случаев, но несколько отличаются по качеству при решении конкретных задач. Предметом этого раздела будет наивный […]

Читать далее »
 
Rambler's Top100