Маски подсети переменной длины

Термин маска подсети переменной длины (variable-length subnet mask VLSM) означает, что одна сеть может быть сконфигурирована с различными масками. Основная идея применения VLSM3 заключается в предоставлении большей гибкости при разбиении сети на несколько подсетей, т.е. для оптимального распределения допустимого количества хостов в различных подсетях. Без VLSM для всей сети может использоваться только одна маска подсети. Тогда количество хостов в подсетях будет строго ограничено. Если же вы выберете маску, которая предоставит нужное количество подсетей, то, возможно, вам будет недостаточно допустимого количества хостов для каждой подсети. Та же ситуация справедлива и для хостов, т.е. маска, обеспечивающая достаточное количество хостов, ограничивает вас в числе подсетей. Маски переменной длины предоставляют возможность выделять подсети с различным количеством хостов в них, что позволяет сетевому администратору более эффективно использовать доступное адресное пространство.

Допустим для примера, что вам выделена сеть класса С с адресом 192.214.11.0, и

требуется разделить ее на три подсети. В одной подсети должно быть около 100 хостов, а в двух других — около 50 хостов в каждой. Исключая два адреса, 0 (номер сети) и 255 (широковещательный адрес для сети) вам теоретически доступно 256 адресов хостов для сети класса С, т.е. с 192.214.11.0 до 192.214.11.255. Как видите разбить такую  сеть  на подсети с требуемым количеством хостов без использования VLSM невозможно.

Чтобы определить параметры подсети в сети 192.214.11.0, сначала необходимо определить маску сети, которая  для обычной сети класса С будет представлена в  виде 255.255.255.0 (все биты равны 1 в первых трех октетах). Для разделения сети класса С с адресом 192.214.11.0 на подсети можно использовать несколько масок вида 255.255.255.Х. Маска, начиная со старшего (самого левого) бита, должна иметь непрерывный ряд единиц и оканчиваться нулями.

Примечание

Изначально маски не обязательно должны были состоять из непрерывных групп 1 и оканчиваться 0. Иногда, например, практиковалось использование "средних битов" в маске для определения адресной части, отвечающей за идентификацию хоста,

при этом младшие биты определяли адрес подсети. Хотя подобная гибкость в работе с масками и помогает сетевым администраторам при распределении адресов, все же эта методика значительно затрудняет маршрутизацию в сетях. Вследствие  этого, согласно новым спецификациям, требуется, чтобы маски состояли из групп непрерывных единиц.

В табл. 3.3 приведены потенциальные маски, которые могут применяться для сегментирования адресного пространства из 256 адресов на подсети.

Таблица 3.3 Разделение сети класса C на подсети

Последний октет      Двоичное

представление

Количество

подсетей                         Число хостов*

128                               1000 0000                        2                                       128

192                               1100 0000                        4                                       64

224                               1110 0000                        8                                       32

240                               1111 0000                        16                                     16

248                               1111 1000                        32                                     8

252                               1111 1100                        64                                     4

*Обратите внимание на то, что в поле таблицы  "Число хостов" включены  и адрес подсети и широковещательный адрес.

До появления VLSM сети обычно делились лишь простыми масками, как указано в табл. 3.3. В этом случае у вас был выбор применять маску 255.255.255.128 и разбить адресное пространство  на две подсети по 128 хостов в каждой  или разбить его маской 255.255.255.192 на четыре подсети по 64 хоста в каждой. Однако ни одна из этих процедур не соответствует вашим требованиям получить сегмент сети размером 100 хостов и еще два сегмента по 50 хостов в каждом.

Рис. 3.7. Пример сети класса С, разделенной на три подсети

Рис. 3.8. Применение VLSM для неравного деления адресного пространства на подсети

Прибегнув к использованию масок переменной длины, вы можете выполнить поставленную задачу. Представим, что вы получили сеть 192.214.11.0. Во-первых, разделите эту сеть на две подсети маской 255.255.255.128. Вы получите две подсети по 128 хостов в каждой. Эти две подсети будут представлены адресами 192.214.11.0 (от .0 до .127) и 192.214.11.128 (от .128 до .255). Затем вторую подсеть с адресом 192.214.11.128 разбейте еще на две подсети с помощью маски 255.255.255.192 — вы получите две подсети по 64 адреса в

каждой: подсети 192.214.11.128 (адреса от .128 до 191) и 192.214.11.192 (адреса от .192 до 255). На рис. 3.7 и 3.8 представлен механизм деления адресного пространства на подсети. Обратите внимание, что адрес подсети и ее широковещательный адрес также включены в число адресов хостов.

Конечно, далеко не все протоколы маршрутизации поддерживают VLSM. Так, протокол информации о маршрутах версии 1 Routing Information Protocol (RIP-1) и протокол маршрутизации внутреннего шлюза Interior Gateway Routing Protocol (IGRP) не передают информацию о сетевых масках при обновлениях маршрутной информации и, следовательно, не могут корректно маршрутизировать сети с подсетями переменной длины. Сегодня, несмотря на то, что протоколы маршрутизации, такие как протокол кратчайшего свободного пути Open Shortest Path First (OSPF), расширенный IGRP (Enchanced IGRP или EIGRP), протокол информации о маршрутах версии 2 Routing Information Protocol (RIP-2) и протокол связи промежуточных систем Intermediate System-to-Intermediate System (IS-IS), поддерживают работу с VLSM, администраторы до сих пор испытывают трудности при реализации этой методики разделения сетей. Построенные ранее на базе протоколов RIP-1 и IGRP сети имеют структуру IP-адресов, распределенных таким образом, что невозможно более оптимально сгруппировать их в блоки различной длины. Таким образом, ввиду разброса IP-адресов администраторам пришлось бы перенумеровать все хосты в сети для того, чтобы привести их в соответствие с новой системой адресации. Такая перенумерация является довольно сложной процедурой, и администраторы чаще всего сразу же отвергают подобную перспективу. Однако одновременное сосуществование двух систем осложняет ситуацию и вынуждает администраторов всячески маневрировать и применять статическую маршрутизацию для обеспечения нормальной работы в сети.

Источник: Сэм Хелеби, Денни Мак-Ферсон, Принципы маршрутизации в Internet, 2-е  издание.  : Пер. с англ. М. : Издательский дом «Вильямс», 2001. — 448 с. : ил. — Парал. тит. англ.

Вы можете следить за любыми ответами на эту запись через RSS 2.0 ленту. Вы можете оставить ответ, или trackback с вашего собственного сайта.

Оставьте отзыв

XHTML: Вы можете использовать следующие теги: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

 
Rambler's Top100