Коллаборативная фильтрация

С нетехнологичным способом получить рекомендацию о товаре, фильме или развлекательном сайте вы знакомы. Достаточно спросить у друзей. Знаете вы и о том, что у некоторых ваших друзей вкус лучше, чем у других; вы имели возможность убедиться в этом, поскольку не раз оказывалось, что им нравится то же, что и вам. Но по мере увеличения количества предложений становится все менее практично основывать решение на опросе небольшой группы людей, поскольку они могут просто не знать обо всех имеющихся вариантах. Тут-то и приходит на помощь то, что принято называть коллаборативной фильтрацией.

Обычно алгоритм коллаборативной фильтрации работает следующим образом: просматривает большую группу людей и отыскивает в ней меньшую группу с такими же вкусами, как у вас. Он смотрит, какие еще вещи им нравятся, объединяет предпочтения и создает ранжированный список предложений. Есть несколько способов решить, какие люди похожи, и объединить их предпочтения в список.

Термин «коллаборативная фильтрация» впервые употребил Дэвид Голдберг (David Goldberg) из компании Xerox PARC в 1992 году в статье «Using collaborative filtering to weave an information tapestry>>.On спроектировал систему Tapestry, которая позволяла людям аннотировать документ как интересный или неинтересный и применяла эту информацию для фильтрации документов, предлагаемых другим людям. Теперь тот же алгоритм коллаборативной фильтрации применяется на тысячах сайтов для рекомендования фильмов, музыки, книг, знакомств, товаров, других сайтов, подкастов, статей и даже анекдотов.

Вы можете следить за любыми ответами на эту запись через RSS 2.0 ленту. Вы можете оставить ответ, или trackback с вашего собственного сайта.

Оставьте отзыв

XHTML: Вы можете использовать следующие теги: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

 
Rambler's Top100